Sensor Technology
So far, we have considered mainlythe nature and characteristics of EM radiation in terms of sources and behavior when interacting with materials and objects. It was stated that the bulk of the radiation sensed is either reflected or emitted from the target, generally through air until it is monitored by a sensor. The subject of what sensors consist of and how they perform (operate) is important and wide ranging. It is also far too involved to merit an extended treatment in this Tutorial. However, a synopsis of some of the basics is warranted on this page. A comprehensive overall review of Sensor Technology, developed by the Japanese Association of Remote Sensing, is found on the Internet at this mirror site. Some useful links to sensors and their applications is included in this NASA site. We point out here that many readers of this Tutorial are now using a sophisticated sensor that uses some of the technology described below: the Digital Camera; more is said about this everyday sensor near the bottom of the page.
Most remote sensing instruments (sensors) are designed to measure photons. The fundamental principle underlying sensor operation centers on what happens in a critical component - the detector. This is the concept of the photoelectric effect (for which Albert Einstein, who first explained it in detail, won his Nobel Prize [not for Relativity which was a much greater achievement]; his discovery was, however, a key step in the development of quantum physics). This, simply stated, says that there will be an emission of negative particles (electrons) when a negatively charged plate of some appropriate light-sensitive material is subjected to a beam of photons. The electrons can then be made to flow from the plate, collected, and counted as a signal.
A key point: The magnitude of the electric current produced (number of photoelectrons per unit time) is directly proportional to the light intensity. Thus, changes in the electric current can be used to measure changes in the photons (numbers; intensity) that strike the plate (detector) during a given time interval. The kinetic energy of the released photoelectrons varies with frequency (or wavelength) of the impinging radiation. But, different materials undergo photoelectric effect release of electrons over different wavelength intervals; each has a threshold wavelength at which the phenomenon begins and a longer wavelength at which it ceases.
Now, with this principle established as the basis for the operation of most remote sensors, let us
summarize several main ideas as to sensor types (classification) in the setwo diagrams:
From this imposing list, we shall concentrate the discussion on optical-mechanical-electronic radiometers and scanners, leaving the subjects of camera-film systems and active radar for consideration elsewhere in the Tutorial and holding the description of thermal systems to a minimum (see Section 9 for further treatment). The top group comprises mainly the geophysical
sensors we considered earlier in this Section.
The two broadest classes of sensors are Passive (energy leading to radiation received comes
from an external source, e.g., the Sun) and Active (energy generated from within the sensor system, beamed outward, and the fraction returned is measured). Sensors can be non-imaging
(measures the radiation received from all points in the sensed target, integrates this, and reports the result as an electrical signal strength or some other quantitative attribute, such as radiance) or
imaging (the electrons released are used to excite or ionize a substance like silver (Ag) in film or to drive an image producing device like a TV or computer monitor or a cathode ray tube or oscilloscope or a battery of electronic detectors (see further down this page for a
discussion of detector types); since the radiation is related to specific points in the target, the end result is an image [picture] or a raster display [as in:the parallel lines {horizontal} on a TV screen).
Radiometer is a general term for any instrument that quantitatively measures the EM radiation in some interval of the EM spectrum. When the radiation is light from the narrow spectral band including the visible, the term photometer can be substituted. If the sensor includes a component, such as a prism or diffraction grating, that can break radiation extending over a part of the spectrum into discrete wavelengths and disperse (or separate) them at different angles to detectors, it is called a spectrometer. One type of spectrometer (used in the laboratory for chemical analysis) passesmultiwavelength radiation through a slit onto a dispersing medium which reproduces the slit as lines at various spacings on a film plate. The term spectroradiometer tends to imply that the dispersed radiation is in bands rather than discrete wavelengths. Most air/space sensors are spectroradiometers.
Sensors that instantaneously measure radiation coming from the entire scene at once are called framing systems. The eye, a photo camera, and a TV vidicon belong to this group. The size of the scene that is framed is determined by the apertures and optics in the system that define the field of view, or FOV. If the scene is sensed point by point (equivalent to small areas within the scene) along successive lines over a finite time, this mode of measurement makes up a scanning system. Most non-camera sensors operating from moving platforms image the scene by scanning.
From Sabins, Jr., F.F., Remote Sensing: Principles and
Interpretation, 2nd Ed., W.H. Freeman
Each line is subdivided into a sequence of individual spatial elements that represent a corresponding square, rectangular, or circular area (ground resolution cell) on the scene surface being imaged (or in, if the target to be sensed is the 3-dimensional atmosphere). Thus, along any line is an array of contiguous cells from each of which emanates radiation. The cells are sensed one after another along the line. In the sensor, each cell is associated with a pixel (picture element) that is tied to a microelectronic detector; each pixel is characterized for a brief time by some single value of radiation (e.g., reflectance) converted by the photoelectric effect into electrons.
The areal coverage of the pixel (that is, the ground cell area it corresponds to) is determined by instantaneous field of view (IFOV) of the sensor system. The IFOV is defined as the solid angle
extending from a detector to the area on the ground it measures at any instant (see above illustration). IFOV is a function of the optics of the sensor, the sampling rate of the signal, the dimensions of any optical guides (such as optical fibers), the size of the detector, and the altitude above the target or scene. The electrons are removed successively, pixel by pixel, to form the varying signal that defines the spatial variation of radiance from the progressively sampled scene.
The image is then built up from these variations - each assigned to its pixel as a discrete value called the DN (a digital number, made by converting the analog signal to digital values of whole numbers over a finite range [for example, the Landsat system range is 28, which spreads from 0 to 255]). Using these DN values, a "picture" of the scene is recreated on film (photo) or on a monitor (image) by converting a two dimensional array of pixels, pixel by pixel and line by line along the direction of forward motion of the sensor (on a platform such as an aircraft or spacecraft) into gray levels in increments determined by the DN range.
The Along Track mode does not have a mirror looking off at varying angles. Instead there is a line of small sensitive detectors stacked side by side, each having some tiny dimension on its plate surface; these may number several thousand. Each detector is a charge-coupled device (CCD), as described in more detail below on this page. In this mode, the pixels that will eventually make up the image correspond to these individual detectors in the line array. As the platform advances along the track, at any given moment radiation from each ground cell area along the ground line is received simultaneously at the sensor and the collection of photons from every cell impinges in the proper geometric relation to its ground position on every individual detector in the linear array equivalent to that position. The signal is removed from each detector in succession from the array in a very short time (milliseconds), the detectors are reset to a null state, and are then exposed to new radiation from the next line on the ground that has been reached by the sensor's forward motion. This type of scanning is also referred to as pushbroom scanning (from the mental image of
cleaning a floor with a wide broom through successive forward sweeps). As signal sampling improves, the possibility of sets of linear arrays, leading to area arrays, all being sampled at once will increase the equivalent area of ground coverage.
On the remainder of this page, we will concentrate on scanning spectroradiometers. The common components of a sensor system are shown in this table (not all need be present in a given sensor, but most are essential):
Below it is a simplified cutaway diagram of the Landsat Multispectral Scanner (MSS) which through what is here called a shutter wheel or mount, containing filters each passing a limited range of wavelength, the spectral aspect to the image scanning system is added, i.e., produces discrete spectral bands:
The radiation - normally visible and/or Near and Short Wave IR, and/or thermal emissive in nature - must then be broken into its spectral elements, into broad to narrow bands. The width in wavelength units of a band or channel is defined by the instrument's spectral resolution Prisms and diffraction gratings are one way to break selected parts of the EM spectrum into intervals;
filters are another. In the above cutaway diagram of the MSS the filters are located on the shutter
wheel. The first two spread the radiation at specific angles and need to have detectors placed
where each wavelength-dependent angle directs the radiation. Or. for filter setups, the spectrally-sampled radiation is carried along optical fibers to dedicated detectors. Absorption
filters pass only a limited range of radiation wavelengths, absorbing radiation outside this range.
They may be either broad or narrow bandpass filters. This is a graph of a typical bandpass filter:
The next step is to get the spectrally separated radiation to appropriate detectors. This can be
done through lenses or by detector positioning or, in the case of the MSS and other sensors, by channeling radiation in specific ranges to fiber optics bundles that carry the focused radiation
to an array of individual detectors. For the MSS, this involves 6 fiber optics leads for the six lines scanned simultaneously to 6 detectors for each of the four spectral bands, or a total of 24 detectors in all.
In the visible light range, silicon metal and PbO are common detector materials. Silicon photodiodes are used in this range. Photoconductor material in the Near-Ir includes PbS (lead sulphide) and InAs (indium-arsenic). In the Mid-IR (3-6 µm), InSb (indium-stibnium) is responsive.The most common detector material for the 8-14 µm range is Hg-Cd-Te (mercury-cadmium-tellurium); when operating it is necessary to cool the detectors to near zero Kelvin (using Dewars coolers) to optimize the efficiency of electron release. Other detector materials are also used and perform under specific conditions. This next diagram gives some idea
of the variability of semiconductor detectivity over operating wavelength ranges.
Thenature and operation of CCD's are reviewed in these two websites: CCD site 1 and CCD site 2. An individual CCD is an extremely small silicon (micro)detector, which is light-sensitive. Many individual detectors are placed on a chip side by side either in a single row as a linear array or in stacked rows of linear arrays in X-Y (two dimensional) space. Here is a photograph of a CCD chip:
When photons strike a CCD detector, electronic charges develop whose magnitudes are proportional to the intensity of the impinging radiation during a short time interval (exposure time). From 3,000 to more than 10,000 detector elements (the CCDs) can occupy a linear space less than 15 cm in length. The number of elements per unit length, along with the optics, determine the spatial resolution of the instrument. sing integrated circuits each linear array is sampled very rapidly in sequence, producing an electrical signal that varies with the radiation striking the array. This changing signal recording goes through a processor to a recorder, and finally, is used to drive an electro-optical device to make a black and white image, similar to MSS or TM signals. After the instrument samples the almost instantaneous signal, the array discharges electronically fast enough to allow the next incoming radiation to be detected independently. A linear one-dimensional) array acting as the detecting sensor advances with the spacecraft's orbital motion, producing successive lines of image data (analogous to the forward sweep of a pushbroom). Using filters to select wavelength intervals, each associated with a CCD array, we get multiband sensing. The one disadvantage of current CCD systems is their limitation to visible and near IR (VNIR) intervals of the EM spectrum. (CCDs are also the basis for two-dimensional arrays - a series of linear CCDs stacked in parallel to extend over an area; these are used in the now popular digital cameras and are the sensor detectors commonly employed in telescopes of recent vintage.)
Once a scanner or CCD signal has been generated at the detector site, it needs to be carried through the electronic processing system whose output is the signal used to make images or be analyzed (commonly as DN variations) by computer programs. Pre-amplification may be the first stage. Onboard digitizing is commonly applied to the signal and to the reference radiation source used in calibration. The final output is then sent to a ground receiving station, either by direct readout (line of sight) or through a satellite relay system like TDRSS (Tracking and Relay Satellite
System; geosynchronous communications satellites). Another option is to record the signals on a tape recorder and play back the signals when the satellite can directly transmit to a receiving station (this was used on many of the earlier satellites, including Landsat [ERTS], both is now almost obsolete because of the much improved satellite communications network).
The subject of sensor performance is beyond the scope of this page. Three common measures will be mentioned: 1) S/N (signal to noise ratio; the noise can come from internal electronic components or the detectors themselves); 2) NEΔP and NEΔT, the Noise Equivalent Power (forreflectances) and 3) Noise Equivalent Temperature (for thermal emission), which relate toconditions between two adjacent detectors that affect their corresponding adjacent pixels.
To tie the above theory to real systems, we show a photo of the MODIS sensor that now functioning well on the Terra spacecraft launched in late 1999 and Aqua two years later.
Exterior
How a Digital
Camera Operates
The Interior of
a Digital
3 comments:
timberland pas cher, michael kors outlet, nike free uk, guess pas cher, michael kors, michael kors outlet, hollister uk, ralph lauren uk, abercrombie and fitch uk, north face uk, coach purses, burberry outlet, converse pas cher, coach outlet, polo lacoste, nike blazer pas cher, uggs outlet, michael kors outlet online, michael kors outlet online, hollister pas cher, lululemon canada, michael kors, sac hermes, true religion outlet, uggs outlet, nike air force, michael kors outlet online, burberry handbags, sac vanessa bruno, michael kors outlet, nike air max uk, new balance, true religion outlet, mulberry uk, vans pas cher, ray ban uk, ray ban pas cher, nike tn, true religion outlet, kate spade, north face, nike air max, true religion jeans, coach outlet store online, michael kors outlet online, hogan outlet, oakley pas cher, nike air max uk, nike roshe run uk
insanity workout, hollister clothing, jimmy choo outlet, longchamp uk, soccer shoes, iphone 6s cases, ralph lauren, hermes belt, iphone 6 cases, abercrombie and fitch, mont blanc pens, timberland boots, s6 case, mcm handbags, chi flat iron, lululemon, mac cosmetics, giuseppe zanotti outlet, iphone 6s plus cases, ferragamo shoes, herve leger, iphone cases, celine handbags, north face outlet, nfl jerseys, valentino shoes, soccer jerseys, iphone 5s cases, wedding dresses, bottega veneta, nike huaraches, ghd hair, baseball bats, iphone 6 plus cases, north face outlet, p90x workout, instyler, vans outlet, new balance shoes, oakley, ipad cases, nike trainers uk, babyliss, louboutin, beats by dre, reebok outlet, nike roshe run, nike air max, hollister, asics running shoes
lancel, swarovski, hollister, swarovski crystal, moncler uk, juicy couture outlet, montre pas cher, doudoune moncler, links of london, ray ban, ugg uk, moncler, louis vuitton, moncler, hollister, moncler outlet, moncler, barbour uk, louis vuitton, replica watches, nike air max, louis vuitton, toms shoes, barbour, canada goose outlet, converse outlet, canada goose outlet, marc jacobs, louis vuitton, ugg, juicy couture outlet, pandora jewelry, wedding dresses, canada goose, louis vuitton, ugg,uggs,uggs canada, pandora charms, canada goose uk, pandora uk, pandora jewelry, moncler, canada goose outlet, gucci, moncler outlet, ugg pas cher, converse, thomas sabo, karen millen uk, ugg,ugg australia,ugg italia, canada goose, supra shoes, canada goose jackets, vans
Post a Comment